

Motivation

- Using self-supervised representations seems crucial in low-resource scenarios.
- Most powerful models are large and induce long inference times.
- Can we, during fine-tuning, shrink the model or the inputs to enable faster inferences without a significant impact on the performance?

Global Setting

- SSL Model : WavLM Large, fine-tuned.
- Linear decoder head trained with character-level CTC loss. Results are shown with greedy or LM-rescored decoding.

Early-exit techniques and results

Two heuristics for threshold-based exiting :

- Entropy of probabilities of characters at early-exit decoder i.
- Cosine similarities between successive layers' representations.

Technique		WER \downarrow	GPU (s)	CPU (s)
Baseline	Full Model	4.09	134	1121
Early Exit : Entropy Threshold	Mean Exit Layer			
0.06	13.80	12.08	96	757
0.03	17.61	7.67	116	974
0.025	20.52	6.66	128	1127
0.01	23.98	6.20	142	1275
Early Exit : Layer Sim. Threshold	Mean Exit Layer			
0.92	15.97	10.23	99	812
0.95	17.18	8.78	104	850
0.965	21.44	6.79	120	1070
0.98	24.00	6.20	128	1153
Two Steps EE : Layer Sim. Threshold	Mean Exit Layer			
0.955	13.97	25.29	95	798
0.96	14.52	21.95	102	866
0.97	21.46	6.17	126	1138
0.98	23.0	4.54	130	1175

The early-exits using the proposed heuristics \longrightarrow severely harm the downstream performance.

 \longrightarrow Training the early-exits simultaneously with the model weights leads to poor final-exit performance.

Fine-tuning Strategies for Faster Inference using Speech **Self-Supervised Models: A Comparative Study**

Salah Zaiem^{1,4}

¹LTCI, Télécom Paris, Institut Polytechnique de Paris, France ²COML, ENS-INRIA, PSL, Paris ³Samsung AI Research, Cambridge, UK ⁴ MILA, Montréal, Canada

 \rightarrow Downsampling approaches lead to high inference time gains with low performance drop: 61.3% MACs drop with an WER increase of only 0.81.

 \rightarrow Preferable to the use of distilled/smaller SSL models (not true for memory issues).

Robin Algayres² Titouan Parcollet³ Slim Essid¹ Mirco Ravanelli⁴

Samsung Al Center-Cambridge

• Wall Street Journal (100 hours sample of mix between WSJ0 and WSJ1).

Take-home messages

• With a reasonable amount of annotated data, downsampling your inputs allows substantial efficiency gains with low performance drops. • Code is available on github and within the SpeechBrain library for replication and further investigations.