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Motivation
• Using self-supervised representations seems

crucial in low-resource scenarios.
• Most powerful models are large and induce long

inference times.
• Can we, during fine-tuning, shrink the model or

the inputs to enable faster inferences without a
significant impact on the performance?

Global Setting

• SSL Model : WavLM Large, fine-tuned.
• Linear decoder head trained with character-level

CTC loss. Results are shown with greedy or
LM-rescored decoding.

Early-exit techniques and results

Two heuristics for threshold-based exiting :
• Entropy of probabilities of characters at early-exit

decoder i.
• Cosine similarities between successive layers’

representations.

−→ The early-exits using the proposed heuristics
severely harm the downstream performance.
−→ Training the early-exits simultaneously with the
model weights leads to poor final-exit performance.

Compared approaches
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Results on LibriSpeech train-clean-100
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LibriSpeech train-clean-100

−→ Downsampling approaches lead to high inference time gains with low performance drop: 61.3% MACs
drop with an WER increase of only 0.81.
−→ Preferable to the use of distilled/smaller SSL models (not true for memory issues).

Robustness to dataset change
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−→ Downsampling performance is the most harmed
by smaller available fine-tuning annotated data.

Datasets

• LibriSpeech train-clean-100 and 10-hour splits.
• Buckeye, 11 hours of spontaneous english.
• Wall Street Journal (100 hours sample of mix

between WSJ0 and WSJ1).

Take-home messages
• With a reasonable amount of annotated data,

downsampling your inputs allows substantial
efficiency gains with low performance drops.

• Code is available on github and within the
SpeechBrain library for replication and further
investigations.
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