

Pretext Tasks Selection for Multitask Self-Supervised Speech and Audio Representation Learning

Salah Zaiem Titouan Parcollet, Slim Essid salah.zaiem@telecom-paris.fr

AAAI 2022 The 2nd Workshop on Self-supervised Learning for Audio and Speech Processing

Conditional Independence (CI) Based Estimator

Multitask Self-supervised Learning

Objective

How do we select the self-supervised pretext tasks optimally towards solving a given downstream one ? Can we find a function scoring the usefulness of a given pretext task towards solving a downstream one ?

Conditional Independence (CI) Based Estimator

Multitask Self-supervised Learning

Main Idea

Speech samples \perp Pretext task labels (Pseudo-labels) | Downstream labels

 \longrightarrow Good pretext task.

Speech samples \perp Pseudo labels | Downstream labels

Speech samples \perp Pseudo labels | Downstream labels

Speech samples \perp Pseudo labels | Downstream labels

Non trivial to compute.

Hilbert Schmidt Independence Criterion (HSIC)

- Zaiem, S., Parcollet, T., Essid, S. (2021). Conditional independence for pretext task selection in Self-supervised speech representation learning. INTERSPEECH 2021.
- Kernel-based independence testing between speech samples and pseudo labels

Hilbert Schmidt Independence Criterion (HSIC)

- Zaiem, S., Parcollet, T., Essid, S. (2021). Conditional independence for pretext task selection in Self-supervised speech representation learning. INTERSPEECH 2021.
- Kernel-based independence testing between speech samples and pseudo labels

$$HSIC(X,Z|Y) = \frac{1}{M}\sum_{c\in\mathscr{C}}HSIC_c(X,Z)\times n_c.$$

Conditional Independence (CI) Based Estimator

Multitask Self-supervised Learning

Multi-task SSL

Pascual, S., Ravanelli, M., Serrà, J., Bonafonte, A., Bengio, Y. (2019). Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks. Doersch, C., Zisserman, A. (2017). Multi-task Self-Supervised Visual Learning.

Fig. 1. The proposed PASE+ architecture for self-supervised learning. In blue are the main differences with the previous version of PASE.

Multi Pretext Tasks Selection

From individual pretext task selection to multi-tasked self supervised representation learning

Multi Pretext Tasks Selection

From individual pretext task selection to multi-tasked self supervised representation learning And if we learn a group simultaneously, how do we weight the corresponding losses ?

Best regrouping pretext task $Z_{\lambda} = (\lambda_1 Z_1, ..., \lambda_k Z_k)$ with :

- $(Z_i)_{i \in [0,k]}$ the individual pretext tasks
- (λ_i)_{i∈[0,k]} the weights corresponding to their losses during the pretraining phase.

New Problem

Best regrouping pretext task $Z_{\lambda} = (\lambda_1 Z_1, ..., \lambda_k Z_k)$ with :

- $(Z_i)_{i \in [0,k]}$ the individual pretext tasks
- (λ_i)_{i∈[0,k]} the weights corresponding to their losses during the pretraining phase.

Constraints on the weights :

- Positive weights (non adversarial learning)
- ▶ Not too low => constant sum.
- Sparse weighting vector.

Constraints on the weights

Positive weights (non adversarial learning)

▶ Not too low => constant sum.

Sparse weighting vector.

 $\min_{W \in \mathbb{R}^k} \quad HSIC(Z_{\lambda}, X | Y), \text{ s.t. } \lambda = f(W), \ Z_{\lambda} = (\lambda_1 Z_1, ..., \lambda_k Z_k).$ (1)

with f in [Softmax, Sparsemax].

Martins, A. F. T., Astudillo, R. F. (2016). From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification.

Validation steps

Pretext tasks: pseudo-labels prediction

Candidate pseudo-labels and descriptions

Pseudo-label	Description	
Loudness	Intensity & approx. loudness	
F0	Fundamental Frequency	
Voicing	Voicing Decision	
Alpha Ratio	Ratio of spectrum intensity % 1000 Hz	
Zero Crossing Rate	Zero crossing number per frame	
RastaSpec L1Norm	L1 Norm of Rasta Spectrum	
log HNR	log of Harmonicity to Noise Ratio	

Datasets Roles and Descriptions

Task	Dataset	\sim Dur.(train)	Speakers
Speech			
Pretraining	CommonVoiceEn6.1	1686 hours	\sim 66173
ASR	Libri100	100 hours	251
Speak Recog.	VoxCeleb1	148642 utt	1251
Emotion Recog.	IEMOCAP	12 hours	10
Music			
Music Pretrain.	Audioset(Music Inst.)	155 hours	Irr.
Solo Instr.	Medley-solos-DB	18 hours	Irr.
Multi Instr.	OpenMIC-2018	55 hours	Irr.

First Results

$$L_{SSL} = MSE_{mel} + MSE_{mfcc} + \sum_{i=1}^{k} \lambda_i \ell_1(Z_i), \qquad (2)$$

Table: Results observed with the proposed selection strategies on the three considered downstream tasks.

Models	LibriSpeech	(WER % \downarrow)	VoxCeleb1 (EER % \downarrow)	IEMOCAP (Acc % ↑)
	No LM	LM		
PASE+ (Ravanelli, 2020)	25.11	16.62	11.61	57.86
Selections				
All	21.98 ± 0.36	11.70 ± 0.27	11.90 ± 0.32	56.4 ± 1.3
MRMR	18.94 ± 0.34	10.36 ± 0.26	10.56 ± 0.31	59.6 ±1.29
RFE	20.02 ± 0.34	11.42 ± 0.27	11.91 ± 0.33	55.8 ± 1.3
Softmax	$\textbf{13.17}{\pm}~\textbf{0.28}$	$\textbf{8.00} \pm \textbf{0.23}$	9.24 ± 0.29	60.6 ± 1.27
Sparsemax	17.18 ± 0.32	10.41 ± 0.26	$\textbf{8.63} \pm \textbf{0.27}$	$\textbf{60.8} \pm \textbf{1.28}$

Extending wav2vec 2.0

Effect of adding carefully selected pretext tasks to a powerful CPC task ?

$$L_{SSL} = L_{W2V} + \sum_{i=1}^{k} \lambda_i \ell_1(Z_i).$$
(3)

Extending wav2vec 2.0

Effect of adding carefully selected pretext tasks to a powerful CPC task ?

$$L_{SSL} = L_{W2V} + \sum_{i=1}^{k} \lambda_i \ell_1(Z_i).$$
(4)

Table: Results observed retraining the Wav2vec2 model with and without weighted pretext tasks using the sparsemax method. "Fr." and "Fine." also respectively refer to Frozen and Finetuned settings.

Selections	LibriSpeech	(WER % ↓)	VoxCeleb	1 (EER % ↓)	IEMOCAP	(Acc % ↑)
	Fr.	Fine.	Fr.	Fine.	Fr.	Fine.
wav2vec 2.0 BASE	17.93 ± 0.33	10.21 ± 0.25	7.20 ± 0.26	5.35 ± 0.22	56.6 ± 1.2	$\textbf{74.0} \pm \textbf{1.16}$
wav2vec 2.0 BASE + Naive selection	$17.23~\pm~0.32$	$10.10~\pm~0.25$	6.80 ± 0.25	$\textbf{5.05} \pm \textbf{0.21}$	57.4 ± 1.3	73.7 ± 1.16
wav2vec 2.0 BASE -Sparsemax	$\textbf{16.70} \pm \textbf{0.31}$	$\textbf{9.18} \pm \textbf{0.24}$	$\textbf{6.57} \pm \textbf{0.25}$	5.30 ± 0.22	$\textbf{59.5} \pm \textbf{1.29}$	$\textbf{74.0} \pm \textbf{1.16}$

Task change : Musical Instrument Recognition

Table: Results observed with the proposed selection strategies on the two considered downstream instrument recognition tasks. Accuracy on the test set is computed for Medley-solos-DB while mean F1 Score is shown for OpenMIC. Higher is better for both.

Models	Medley-solos (Acc% ↑)	OpenMIC-2018 (mean-F1 ↑)	
PASE+ (Ravanelli 2020)	None	64 1	
Selections			
All	66.2 ± 0.83	62.89	
MRMR	62.3 ± 0.85	64.23	
RFE	64.6 ± 0.84	62.80	
Softmax	73.5± 0.78	65.06	
Sparsemax	72.6 ± 0.79	65.39	

How do we select the self-supervised pretext tasks optimally towards solving a given downstream one ?

How do we select the self-supervised pretext tasks optimally towards solving a given downstream one ?

- Use Conditional Independence to predict the utility of a pretext-task towards solving a given downstream task.
- Extension to multi-task pretext task selection.
- Efficient way for SSL pretext-tasks exploration.

► Thank you for your attention

Open for questions

Changing the pretraining dataset

Table: Results observed retraining the Wav2vec2 model with and without weighted pretext tasks using the sparsemax method, on LibriSpeech 960. "Fr." and "Fine." also respectively refer to Frozen and Finetuned settings.

Selections	LibriSpeech (WER $\% \downarrow$)		
	Fr.	Fine.	
wav2vec 2.0 <i>BASE</i> wav2vec 2.0 <i>BASE</i> + multitask SSL	9.88 9.5	6.33 6.01	

Evolution of the CI estimation with different numbers of considered speakers for VoxCeleb (First row of plots) and number of samples for Medley (Second row of plots).

32/34

Boxplots of the CI values for every pretext tasks, when more than 200 speakers are considered. Voicing and Loudness are slightly overlapping, but otherwise, the values are separable. We divide the pretext-tasks in two groups according to their CI values for a better visualisation of the results.

Task change : Instrument Recognition

Table: Results observed with the proposed selection strategies on the two considered downstream instrument recognition tasks. Accuracy on the test set is computed for Medley-solos-DB while mean F1 Score is shown for OpenMIC. Higher is better for both.

Models	Medley-solos (Acc% ↑)	OpenMIC-2018 (mean-F1 ↑)	
PASE+ (Rayanelli 2020)	None	64.1	
	None	04.1	
Selections			
All	66.2 ± 0.83	62.89	
MRMR	62.3 ± 0.85	64.23	
RFE	64.6 ± 0.84	62.80	
Softmax	73.5± 0.78	65.06	
Sparsemax	72.6 ± 0.79	65.39	
Sparsemax+	$\textbf{76.1}{\pm}~\textbf{0.76}$	66.0	
Spectral+	$74.6 \pm \ 0.77$	67.7	