

Conditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning

Salah Zaiem, Titouan Parcollet, Slim Essid salah.zaiem@telecom-paris.fr

INTERSPEECH 2021

Conditional Independence (CI) Based Estimator

Testing Procedure and Results

Figure 1: CPC-based data augmentation. Each speech sequence is encoded twice, one for past one for future, with potentially different augmentations for each. The CPC loss tries to contrastively predict future embeddings z_{t+1} based on past ones, ignoring the noise of the augmentation. Positive and negative sequences may have different augmentations.

Figure 1: CPC-based data augmentation. Each speech sequence is encoded twice, one for past one for future, with potentially different augmentations for each. The CPC loss tries to contrastively predict future embeddings z_{t+1} based on past ones, ignoring the noise of the augmentation. Positive and negative sequences may have different augmentations.

Figure 1: CPC-based data augmentation. Each speech sequence is encoded twice, one for part one for future, with potentially different augmentations for each. The CPC loss tries to contrastively predict future embeddings z_{t+1} based on past ones, ignoring the noise of the augmentation. Positive and negative sequences may have different augmentations.

Figure 1: CPC-based data augmentation. Each speech sequence is encoded twice, one for past one for future, with potentially different augmentations for each. The CPC loss tries to contrastively predict future embeddings z_{t+1} based on past ones, ignoring the noise of the augmentation. Positive and negative sequences may have different augmentations.

7/44

Conditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning

Conditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning

Conditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning

Objective

Can we find a function scoring the usefulness of a given pretext task towards solving a downstream one ?

Conditional Independence (CI) Based Estimator

Testing Procedure and Results

Conditional Independence based estimator

Main Idea

 $\begin{array}{l} \mbox{Speech samples} \perp \mbox{Pretext task labels} \mid \mbox{Downstream labels} \\ \longrightarrow \mbox{Good pretext task}. \end{array}$

Conditional Independence based estimator

Speech samples \perp Pretext task labels | Downstream labels

Conditional Independence based estimator

Speech samples \perp Pretext task labels | Downstream labels

Issues with Conditional Independence

- Non trivial to compute.
- Even harder with speech data.

Issues with Conditional Independence

- Non trivial to compute.
- Even harder with speech data.

Contribution

Simple method to compute a CI estimate

Three steps validation

First step

- ► Kernel-based independence testing between speech samples $X = (x_i)_{i \in [0,N]}$ and pseudo labels $Z = (z_i)_{i \in [0,N]}$
- Only need two kernel (similarity) matrices K and L

• Where
$$K_{ij} = k(x_i, x_j)$$
 and $L_{ij} = l(z_i, z_j)$

- ► Kernel-based independence testing between speech samples $X = (x_i)_{i \in [0,N]}$ and pseudo labels $Z = (z_i)_{i \in [0,N]}$
- Only need two kernel (similarity) matrices K and L

• Where
$$K_{ij} = k(x_i, x_j)$$
 and $L_{ij} = l(z_i, z_j)$

$$HSIC(X,Z) = \frac{1}{n^2}Trace(KHLH)$$

$$\blacktriangleright H = I_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$$

- ► Kernel-based independence testing between speech samples $X = (x_i)_{i \in [0,N]}$ and pseudo labels $Z = (z_i)_{i \in [0,N]}$
- Only need two kernel (similarity) matrices K and L
- Where $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(z_i, z_j)$

$$HSIC(X,Z) = \frac{1}{n^2} Trace(KHLH)$$

- $\blacktriangleright H = I_N \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$
- ► Hilbert-Schmidt Norm of the Cross Covariance Operator.
- ► The lower, the more independent.

- ► Kernel-based independence testing between speech samples $X = (x_i)_{i \in [0,N]}$ and pseudo labels $Z = (z_i)_{i \in [0,N]}$
- Only need two kernel (similarity) matrices K and L
- Where $K_{ij} = k(x_i, x_j)$ and $L_{ij} = l(z_i, z_j)$

$$HSIC(X,Z) = \frac{1}{n^2}Trace(KHLH)$$

 $\blacktriangleright H = I_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$

Hilbert-Schmidt Norm of the Cross Covariance Operator.

- ► The lower, the more independent.
- ▶ Intuition : points similar in K are similar in L \rightarrow high HSIC

From Independence to Conditional Independence

- Divide the data points according to the downstream classes.
- Compute the HSIC on every subset.
- Aggregate them in a weighted mean.

$$HSIC(X,Z|Y) = \frac{1}{M} \sum_{c \in \mathscr{C}} HSIC_c(X,Z) \times n_c.$$

- ▶ In our cases, $X \not\perp Z$
- Speaker Recognition as the Downstream Task, Y are speaker ID
- Suppose that Z is a function of Y

- ▶ In our cases, $X \not\perp Z$
- Speaker Recognition as the Downstream Task, Y are speaker ID
- Suppose that Z is a function of Y
- Moving K, Constant $L \longrightarrow \text{low } HSIC$

From Independence to Conditional Independence

- Divide the data points according to the downstream classes.
- Compute the HSIC on every subset.
- Aggregate them in a weighted mean.

$$HSIC(X,Z|Y) = \frac{1}{M} \sum_{c \in \mathscr{C}} HSIC_c(X,Z) \times n_c.$$

Conditional Independence (CI) Based Estimator

Testing Procedure and Results

Next steps : Pretraining

Next steps : Pretraining

Next steps : Finetuning

Next steps : Finetuning

Datasets Roles and Descriptions

Task	Dataset	\sim Dur.(train)	Speakers
Pretraining	CommonVoiceEn6.1	1686 hours	\sim 66173
ASR	TIMIT	5 hours	462
Speak Recog	VoxCeleb1	148642 utt	1251

Pretext tasks: pseudo-labels prediction

Candidate pseudo-labels and descriptions

Pseudo-label	Description
Loudness	Intensity & approx. loudness
F0	Fundamental Frequency
Voicing	Voicing Decision
Alpha Ratio	Ratio of spectrum intensity % 1000 Hz
Zero Crossing Rate	Zero crossing number per frame
RastaSpec L1Norm	L1 Norm of Rasta Spectrum
log HNR	log of Harmonicity to Noise Ratio

Spearman Correlation : correlation between ranks

Kendall τ : proportion of pairs respecting the monotonic relationship

Multi pretext task selection

What if we learned pretext-tasks simultaneously ?

Multi pretext task selection

What if we learned pretext-tasks simultaneously ? Simple attempt : Regrouping the best and the worst pretext tasks for every Downstream task.

Multi pretext task selection

What if we learned pretext-tasks simultaneously ? Simple attempt : Regrouping the best and the worst pretext tasks for every Downstream task.

Experiment	Pseudo Labels	EER/PER
Best VC	F0 /log HNR / AlphaR	6.40
Worst VC	Loud/ZCR/RastaL1/ Voicing	7.33
Best TIM	F0/RastaL1/AlphaR/log HNR	15.35
Worst TIM	Voicing/ Loud/ ZCR	16.77

Can we find a function scoring the usefulness of a given pretext task towards solving a downstream one ?

Can we find a function scoring the usefulness of a given pretext task towards solving a downstream one ?

- Use Conditional Independence to predict the utility of a pretext-task towards solving a given downstream task.
- Efficient way to for SSL pretext-tasks exploration.
- Further works on multi-task pretext task selection.

Thank you all for your attention !!

Please feel free to ask any question