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Speech Self-Supervised Learning

Generated Pseudo-labels

6/44 Une école de l’IMTConditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



Introduction

Encoder

Speech
Embeddings

Harmonic
Noise

Estimation

Pitch
Prediction

Noise
Estimation

Loudness
Estimation

Pretext tasks

Downstream 
Training

Classic tasks :
ASR, Speaker
Recognition

First Phase: SSL
Pretraining

Second Phase:
Downstream
Finetuning

7/44 Une école de l’IMTConditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



Introduction

Encoder

Speech
Embeddings

Harmonic
Noise

Estimation

Pitch
Prediction

Noise
Estimation

Loudness
Estimation

Pretext tasks

Downstream 
Training

Classic tasks :
ASR, Speaker
Recognition

First Phase: SSL
Pretraining

Second Phase:
Downstream
Finetuning

8/44 Une école de l’IMTConditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



Introduction

Encoder

Speech
Embeddings

Harmonic
Noise

Estimation

Pitch
Prediction

Noise
Estimation

Loudness
Estimation

Pretext tasks

Downstream 
Training

Classic tasks :
ASR, Speaker
Recognition

First Phase: SSL
Pretraining

Second Phase:
Downstream
Finetuning

How do we select these pretext tasks ?
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Objective
Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?
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Conditional Independence based estimator

Main Idea
Speech samples ⊥ Pretext task labels | Downstream labels
−→ Good pretext task.
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Issues with Conditional Independence

▶ Non trivial to compute.
▶ Even harder with speech data.
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Issues with Conditional Independence

▶ Non trivial to compute.
▶ Even harder with speech data.

Contribution
Simple method to compute a CI estimate
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Three steps validation
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First step
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Hilbert Schmidt Independence Criterion

▶ Kernel-based independence testing between speech samples
X = (xi)i∈[0,N] and pseudo labels Z = (zi)i∈[0,N]

▶ Only need two kernel (similarity) matrices K and L
▶ Where Kij = k(xi ,xj) and Lij = l(zi ,zj)
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N
▶ Hilbert-Schmidt Norm of the Cross Covariance Operator.
▶ The lower, the more independent.
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Hilbert Schmidt Independence Criterion

▶ Kernel-based independence testing between speech samples
X = (xi)i∈[0,N] and pseudo labels Z = (zi)i∈[0,N]

▶ Only need two kernel (similarity) matrices K and L
▶ Where Kij = k(xi ,xj) and Lij = l(zi ,zj)

HSIC(X ,Z ) =
1
n2 Trace(KHLH)

▶ H = IN − 1
N 1N1T

N
▶ Hilbert-Schmidt Norm of the Cross Covariance Operator.
▶ The lower, the more independent.
▶ Intuition : points similar in K are similar in L −→ high HSIC
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From Independence to Conditional
Independence

▶ Divide the data points according to the downstream classes.
▶ Compute the HSIC on every subset.
▶ Aggregate them in a weighted mean.

HSIC(X ,Z |Y ) =
1
M ∑

c∈C

HSICc(X ,Z )×nc .
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Intuition Break

▶ In our cases, X ̸⊥ Z
▶ Speaker Recognition as the Downstream Task, Y are speaker

ID
▶ Suppose that Z is a function of Y
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Intuition Break

▶ In our cases, X ̸⊥ Z
▶ Speaker Recognition as the Downstream Task, Y are speaker

ID
▶ Suppose that Z is a function of Y
▶ Moving K , Constant L −→ low HSIC
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Next steps : Pretraining
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Next steps : Finetuning
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Next steps : Finetuning

Downstream Test Error
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Datasets

Datasets Roles and Descriptions

Task Dataset ∼Dur.(train) Speakers
Pretraining CommonVoiceEn6.1 1686 hours ∼66173
ASR TIMIT 5 hours 462
Speak Recog VoxCeleb1 148642 utt 1251
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Pretext tasks: pseudo-labels prediction

Candidate pseudo-labels and descriptions

Pseudo-label Description
Loudness Intensity & approx. loudness
F0 Fundamental Frequency
Voicing Voicing Decision
Alpha Ratio Ratio of spectrum intensity % 1000 Hz
Zero Crossing Rate Zero crossing number per frame
RastaSpec L1Norm L1 Norm of Rasta Spectrum
log HNR log of Harmonicity to Noise Ratio

33/44 Une école de l’IMTConditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



Results

34/44 Une école de l’IMTConditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



Results
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Results

Spearman Correlation : correlation between ranks
Kendall τ : proportion of pairs respecting the monotonic relationship
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Results

Spearman Correlation : 0.93
Kendall τ : 0.81

Spearman Correlation : 0.48
Kendall τ : 0.41
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Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
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Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
Simple attempt : Regrouping the best and the worst pretext tasks
for every Downstream task.
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Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
Simple attempt : Regrouping the best and the worst pretext tasks
for every Downstream task.

Experiment Pseudo Labels EER/PER
Best VC F0 /log HNR / AlphaR 6.40
Worst VC Loud/ZCR/RastaL1/ Voicing 7.33
Best TIM F0/RastaL1/AlphaR/log HNR 15.35
Worst TIM Voicing/ Loud/ ZCR 16.77
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Conclusion

Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?
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Conclusion

Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?

▶ Use Conditional Independence to predict the utility of a
pretext-task towards solving a given downstream task.

▶ Efficient way to for SSL pretext-tasks exploration.
▶ Further works on multi-task pretext task selection.
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Thank You

Thank you all for your attention !!

Please feel free to ask any question
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