TELECOM

Paris
mHE

N2 1P PARIS

4

LABORATOIRE
INFORMATIQUE D'AVIGNON

Conditional Independence for
Pretext Task Selection in
Self-Supervised Speech
Representation Learning

Salah Zaiem, Titouan Parcollet, Slim Essid
salah.zaiem@telecom-paris.fr

INTERSPEECH 2021



I Outline

Introduction

Conditional Independence for Pretext Task Selection in Self-Supervised Speech Representation Learning



I Spcech Self-Supervised Learning
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Figure 1: CPC-based data augmentation. Each speech sc-

quence is encoded twice, one for past one for future, with po-
tentially different augmentations for each. The CPC loss iries
to contrastively predict future embeddings % based on past
ones, ignoring the noise of the augmentarion. Positive and neg-
ative sequences may have different augmentations.
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I Spcech Self-Supervised Learning
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How do we select these pretext tasks ?
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Objective

Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?
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I Outline

Conditional Independence (Cl) Based Estimator
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I Conditional Independence based estimator

Main ldea

Speech samples L Pretext task labels | Downstream labels
— Good pretext task.
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I Issues with Conditional Independence

» Non trivial to compute.

» Even harder with speech data.
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I Issues with Conditional Independence

» Non trivial to compute.

» Even harder with speech data.

Contribution
Simple method to compute a Cl estimate
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I Three steps validation
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B First step
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I Hilbert Schmidt Independence Criterion

» Kernel-based independence testing between speech samples
X = (xi)iejo,n and pseudo labels Z = (zi)ic[o,n]

» Only need two kernel (similarity) matrices K and L

» Where Kjj = k(xi,x;) and Ljj = I(z,z)
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I Hilbert Schmidt Independence Criterion

» Kernel-based independence testing between speech samples
X = (xi)iejo,n) and pseudo labels Z = (z;)ic[o,n]

v

Only need two kernel (similarity) matrices K and L
Where Kjj = k(xi,x;) and L = I(z;,zj)

v

1
HSIC(X,Z) = — Trace(KHLH)
n

v

H=Iy—%1n1]

Hilbert-Schmidt Norm of the Cross Covariance Operator.

vy

The lower, the more independent.
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I Hilbert Schmidt Independence Criterion

» Kernel-based independence testing between speech samples
X = (xi)ieo,n and pseudo labels Z = (z;)ic[o,n]

» Only need two kernel (similarity) matrices K and L

» Where Kjj = k(xj,x;) and L = I(z;, z))

HSIC(X,Z) = % Trace(KHLH)

H=Iy—41n1]
Hilbert-Schmidt Norm of the Cross Covariance Operator.

The lower, the more independent.

vvyyypy

Intuition : points similar in K are similar in L — high HSIC
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I From Independence to Conditional
Independence

» Divide the data points according to the downstream classes.
» Compute the HSIC on every subset.
> Aggregate them in a weighted mean.

HSIC(X,Z|Y) = — ¥ HSIC/(X,Z
SIC(X,Z|Y) Mc);g SIC.(X,Z) % n.
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I htuition Break

» Inourcases, X [ Z

» Speaker Recognition as the Downstream Task, Y are speaker
ID

» Suppose that Z is a function of Y
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I htuition Break

» In our cases, X [ Z

» Speaker Recognition as the Downstream Task, Y are speaker
ID

» Suppose that Z is a function of Y
> Moving K, Constant L — low HSIC
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I Outline

Testing Procedure and Results
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I Next steps : Finetuning
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I Datasets

Datasets Roles and Descriptions

Task Dataset ~Dur.(train) Speakers
Pretraining CommonVoiceEn6.1 1686 hours ~66173
ASR TIMIT 5 hours 462
Speak Recog VoxCelebl 148642 utt 1251
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B Pretext tasks: pseudo-labels prediction

Candidate pseudo-labels and descriptions

Pseudo-label Description

Loudness Intensity & approx. loudness

FO Fundamental Frequency

Voicing Voicing Decision

Alpha Ratio Ratio of spectrum intensity % 1000 Hz

Zero Crossing Rate  Zero crossing number per frame
RastaSpec L1INorm L1 Norm of Rasta Spectrum
log HNR log of Harmonicity to Noise Ratio
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I Results
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I Results

Spearman Correlation : correlation between ranks
Kendall T : proportion of pairs respecting the monotonic relationship
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I \Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
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I \Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
Simple attempt : Regrouping the best and the worst pretext tasks
for every Downstream task.
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I \Multi pretext task selection

What if we learned pretext-tasks simultaneously ?
Simple attempt : Regrouping the best and the worst pretext tasks
for every Downstream task.

Experiment Pseudo Labels EER/PER
Best VC FO /log HNR / AlphaR 6.40
Worst VC Loud/ZCR/RastalL1/ Voicing  7.33

Best TIM FO/RastalLl/AlphaR/log HNR 15.35
Worst TIM  Voicing/ Loud/ ZCR 16.77
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B Conclusion

Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?
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B Conclusion

Can we find a function scoring the usefulness of a given pretext
task towards solving a downstream one ?

» Use Conditional Independence to predict the utility of a
pretext-task towards solving a given downstream task.

> Efficient way to for SSL pretext-tasks exploration.
» Further works on multi-task pretext task selection.
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I Thank You

Thank you all for your attention !!

Please feel free to ask any question
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