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Self-supervised Learning (SSL)

▶ Self-supervised models allowed substantial performance
progress in ASR, especially in low-resource scenarios.

▶ With a few hours of annotated data, reasonable performances
can be reached on a target domain.

Example: Fine-tuning Wav2vec2 Large on only 10 hours from
LibriSpeech → 5% WER on test-other.



Domain shift for Self-Supervised Models

When encountering audios with conditions very different from
pretraining ones, SSL based models suffer high ASR performance
drops.
▶ Fine-tuning Wav2vec2 Large on only 10 hours from

LibriSpeech → 5% WER on test-other.
▶ Fine-tuning on 10 hours from CommonVoice (CV) → > 25%

WER on CV test.

Domain shifts are diverse: linguistic, accent-related, prosodic,
acoustic.. We will work on acoustic shifts.
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Transfer learning

▶ In low-resource settings, transfer learning using data from
other domains is very useful.

▶ It is less useful when the two domains are acoustically very
different.

Question
How can we exploit large annotated datasets from other domains
better ?
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Automatic Data Augmentation

Objective: Given a target annotated dataset (X ,Y ), obtain a data
augmentation policy τ imitating its acoustic conditions.

An augmentation distribution τ is defined by a set of parameters
defining how a chain of augmentations is sampled during training.



Conditional Independence based estimator

▶ Inspired by data augmentation selection for contrastive
self-supervised pretraining.

▶ Precisely, we developed a conditional-independence based
function that scores a candidate policy τ given a target
dataset (X ,Y ).

S. Zaiem and al., "Automatic Data Augmentation Selection and Parametrization in
Contrastive Self-Supervised Speech Representation Learning," in Interspeech 2022



A few definitions and notations

Inputs: target dataset (X ,Y ), augmentation distribution τ
▶ fτ the function that augments audio files sampling from τ.
▶ X ′ the dataset consisting of different views of X samples

(X fτ−→ X ′).

▶ For a point x ∈ X ′, we will call z an ID of the original point in
X it was generated from and Z the resulting set.

▶ HSIC(X ′,Z ) is the Hilbert-Schmidt Independence Criterion
value for two sets (X ′,Z ). It is positive a value. The lower,
the more independent X ′ and Z are.

Gretton, A. and al. (2007). A Kernel Statistical Test of Independence. In NeurIPS
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Computation steps
Inputs: target dataset (X ,Y ), augmentation distribution τ

1. Creating N views per audio: X fτ (x)−−−→ X ′ with fτ the function
that augments audio segments sampling from τ.

2. Split the audio samples per downstream class (word identity).
Segments obtained with force-alignment.

3. With C the set of classes, and HSICc(X ′,Z ) the independence
test value for points sharing the class (i.e. word) c, compute:

HSIC(X ′,Z |Y ) =
1
M ∑

c∈C

HSICc(X ′,Z )×nc .

The lower this value, the better τ is for acoustic condition cloning.

τ∗ = argmin
τ

HSIC(X ′,Z |Y )
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Some intuition

(X, Y=y)

τ
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No independence in the second circle −→ high HSIC value



Some intuition

(X, Y=y)

τ

(X', Y=y)

Independence −→ low HSIC value
▶ Collapse is prevented by fixing limits to the augmentations

sampled.
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Inputs
▶ Annotated target dataset DT , small size, and specific acoustic

conditions.
▶ Large clean ("Neutral") dataset DC
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Steps
First step :  Data augmentation selection and parametrization

Target
Domain

Conditional
independence based
data augmentation

selection

Selected
augmentation
distribution τ*

Neutral
Domain

Data augmentation Pretrained self-
supervised model

Second step : Fine tuning on the augmented neutral dataset

Textual transcriptions

Third step : Further finetuning on the target dataset

Target
Domain
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Settings

▶ SSL Model: Wav2vec 2.0 Large.
▶ Downstream head: linear decoder trained with CTC Loss. No

language modelling for decoding.
▶ Downstream classes: 20 most common words longer than 5

characters. We cut at word level using forced alignment.

Baevski, A. and al. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations.



Selecting the Augmentation Distribution

An augmentation distribution τ is defined by a set of parameters
defining how a chain of augmentations is sampled during
pretraining.
Set of considered augmentations:
▶ Reverberation
▶ Low/High passing
▶ Pitch Shifting
▶ Gain
▶ Polarity Inversion
▶ Time dropping
▶ Coloured noise addition



Selecting the Augmentation Distribution
Every distribution τ is represented as a vector of P = 17
parameters.
Probabilities of applying an augmentation / controlling parameters.

Name Description Range (Unit)
Low Min Lowpass minimal frequency cutoff [100-500] (Hz)
Low Max Lowpass maximal frequency cutoff [1000-5000] (Hz)
High Min Highpass minimal frequency cutoff [1000,4000] (Hz)
High Max Highpass maximal frequency cutoff [4000,6000] (Hz)
Pitch min Minimal pitch shift [-6,-2] (semitones)
Pitch max Maximal pitch shift [2,6] (semitones)
Min SNR Minimal SNR for coloured noise [0,5] (dB)
Max SNR Maximal SNR for coloured noise [10,30] (dB)
Min Gain Minimal gain [-20,-10] (dB)
Max Gain Maximal gain [3,10] (dB)

Table: Augmentations, descriptions and parameter ranges

To minimize the described HSIC, we resort to a random search
among the parameters.



Oracle Experiments

We apply a known augmentation distribution to the test splits of
Librispeech and use it as target domain. (10 times)

1. Sample an augmentation distribution τ.
2. Apply τ on LibriSpeech test splits to create the testing sets

and on dev-clean to create DT .

3. Apply our method on DT to obtain a distribution τ∗.
4. Apply τ∗ on LibriSpeech train-clean-100 to obtain DCT , then

use DCT for training.

Warning
Only one fine-tuning is done in the controlled Oracle experiment
as we only have a test target dataset.
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Oracle Experiments

Split No Aug Default Random CI Augment Topline
test-clean 33.81 29.86 29.91 27.20 26.11
test-other 44.12 43.89 42.48 40.68 36.92

Table: Mean WER results on distorted versions of LibriSpeech test splits

▶ Default: All augmentations with default parameters.
▶ Random: Mean of 9 runs with random augmentation policies

during training.
▶ Topline: Applying the test distortions on the train data.



Experiments on Real Distorted Datasets

Conditions for the datasets:
▶ Small target distorted dataset => interesting challenge
▶ Textual correspondance with the neutral dataset (read speech)
▶ Coherent and regular acoustic conditions.

We took the samples from the most productive contributors of
CommonVoice 11.0, and selected two contributors respecting the
conditions. (7 and 9 hours of data)



Experiments on Real Distorted Datasets

Two steps fine-tuning, first on LibriSpeech train-clean-100
(distorted or not), and second on the contributor data.

Contributor Without Augmentations With Augmentations

Train100 Only Contrib. Train100 + Contrib. Default Random CI Augment

Contributor 1 102.52 73.0 27.71 27.95 27.33 24.27
Contributor 2 96.49 98.92 20.48 20.76 22.23 16.49

Table: WER Results on the two considered CommonVoice contributors.



Varying the available annotation
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Figure: Effect of choosing suitable augmentations on the performance
depending on the quantity of in-domain training data for each of the two
considered contributors.



Conclusion

Our approach allows for automatic data augmentation for better
adaptation of self-supervised speech models.
▶ Main strengths : efficient and good in very low resource

scenarios.
▶ Limitations: Limited to acoustic mismatch and need to see

the effect of bigger "Neutral" datasets.



Thank You

Thank you all for your attention !

Please feel free to ask any question.



Oracle Experiments

The oracle experiments has two main advantages:
1. Ensuring that the distortions in the target set can be

replicated with the considered set of augmentations.
2. Allows to compare the obtained distribution τ∗ with the one

used to create the target.



After results

▶ We observe a Spearman correlation score of 0.51 between the
HSIC scores and the distances between vectors of probabilities.

▶ Furthermore, the application probabilities of the 10 (top 5%)
best scoring distributions are 15% closer to the target ones
than those of the 10 worst scoring ones.
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