Automatic Data Augmentation for Domain Adapted Fine-Tuning of Self-Supervised Speech Representations

Salah Zaiem, Titouan Parcollet and Slim Essid salah.zaiem@telecom-paris.fr

INTERSPEECH 2023

Samsung Al Center-Cambridge

Introduction

Conditional Independence for Automatic Data Augmentation

Experiments and Results

Self supervised learning (SSL)

Self supervised learning (SSL)

Self-supervised Learning (SSL)

- Self-supervised models allowed substantial performance progress in ASR, especially in low-resource scenarios.
- With a few hours of annotated data, reasonable performances can be reached on a target domain.

Example: Fine-tuning Wav2vec2 Large on only 10 hours from LibriSpeech \rightarrow 5% WER on *test-other*.

Domain shift for Self-Supervised Models

When encountering audios with conditions very different from pretraining ones, SSL based models suffer high ASR performance drops.

- ► Fine-tuning Wav2vec2 Large on only 10 hours from LibriSpeech → 5% WER on *test-other*.
- ▶ Fine-tuning on 10 hours from CommonVoice (CV) \rightarrow > 25% WER on CV test.

Domain shift for Self-Supervised Models

When encountering audios with conditions very different from pretraining ones, SSL based models suffer high ASR performance drops.

- Fine-tuning Wav2vec2 Large on only 10 hours from LibriSpeech → 5% WER on *test-other*.
- ▶ Fine-tuning on 10 hours from CommonVoice (CV) \rightarrow > 25% WER on CV test.

Domain shifts are diverse: linguistic, accent-related, prosodic, acoustic.. We will work on acoustic shifts.

Transfer learning

- In low-resource settings, transfer learning using data from other domains is very useful.
- It is less useful when the two domains are acoustically very different.

Question

How can we exploit large annotated datasets from other domains better ?

Idea

Specific acoustic conditions Large "Clean" Dataset

Idea

Introduction

Conditional Independence for Automatic Data Augmentation

Experiments and Results

Automatic Data Augmentation

Objective: Given a target annotated dataset (X, Y), obtain a data augmentation policy τ imitating its acoustic conditions.

An augmentation distribution τ is defined by a set of parameters defining how a chain of augmentations is sampled during training.

Conditional Independence based estimator

- Inspired by data augmentation selection for contrastive self-supervised pretraining.
- Precisely, we developed a conditional-independence based function that scores a candidate policy τ given a target dataset (X, Y).

S. Zaiem and al., "Automatic Data Augmentation Selection and Parametrization in Contrastive Self-Supervised Speech Representation Learning," in Interspeech 2022

A few definitions and notations

Inputs: target dataset (X, Y), augmentation distribution au

- f_{τ} the function that augments audio files sampling from τ .
- ► X' the dataset consisting of different views of X samples $(X \xrightarrow{f_{\tau}} X')$.

A few definitions and notations

Inputs: target dataset (X, Y), augmentation distribution au

- f_{τ} the function that augments audio files sampling from τ .
- ► X' the dataset consisting of different views of X samples $(X \xrightarrow{f_{\tau}} X')$.
- For a point x ∈ X', we will call z an ID of the original point in X it was generated from and Z the resulting set.
- ► HSIC(X', Z) is the Hilbert-Schmidt Independence Criterion value for two sets (X', Z). It is positive a value. The lower, the more independent X' and Z are.

Gretton, A. and al. (2007). A Kernel Statistical Test of Independence. In NeurIPS

Computation steps

Inputs: target dataset (X, Y), augmentation distribution τ

- 1. Creating N views per audio: $X \xrightarrow{f_{\tau}(x)} X'$ with f_{τ} the function that augments audio segments sampling from τ .
- 2. Split the audio samples per downstream class (word identity). Segments obtained with force-alignment.

Computation steps

Inputs: target dataset (X, Y), augmentation distribution τ

- 1. Creating N views per audio: $X \xrightarrow{f_{\tau}(x)} X'$ with f_{τ} the function that augments audio segments sampling from τ .
- 2. Split the audio samples per downstream class (word identity). Segments obtained with force-alignment.
- With & the set of classes, and HSIC_c(X', Z) the independence test value for points sharing the class (*i.e.* word) c, compute:

$$HSIC(X', Z|Y) = \frac{1}{M} \sum_{c \in \mathscr{C}} HSIC_c(X', Z) \times n_c.$$

The lower this value, the better au is for acoustic condition cloning.

$$au^* = rgmin_{ au} HSIC(X', Z|Y)$$

Some intuition

No independence in the second circle \longrightarrow high HSIC value

Some intuition

Independence \longrightarrow low *HSIC* value

 Collapse is prevented by fixing limits to the augmentations sampled.

Introduction

Conditional Independence for Automatic Data Augmentation

Experiments and Results

Inputs

- Annotated target dataset D_T, small size, and specific acoustic conditions.
- ► Large clean ("Neutral") dataset D_C

Steps

Settings

- SSL Model: Wav2vec 2.0 Large.
- Downstream head: linear decoder trained with CTC Loss. No language modelling for decoding.
- Downstream classes: 20 most common words longer than 5 characters. We cut at word level using forced alignment.

Baevski, A. and al. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.

Selecting the Augmentation Distribution

An augmentation distribution τ is defined by a set of parameters defining how a chain of augmentations is sampled during pretraining.

Set of considered augmentations:

- Reverberation
- Low/High passing
- Pitch Shifting
- Gain
- Polarity Inversion
- Time dropping
- Coloured noise addition

Selecting the Augmentation Distribution

Every distribution τ is represented as a vector of P = 17 parameters.

Probabilities of applying an augmentation / controlling parameters.

Name	Description	Range (Unit)
Low Min	Lowpass minimal frequency cutoff	[100-500] (Hz)
Low Max	Lowpass maximal frequency cutoff	[1000-5000] (Hz)
High Min	Highpass minimal frequency cutoff	[1000,4000] (Hz)
High Max	Highpass maximal frequency cutoff	[4000,6000] (Hz)
Pitch min	Minimal pitch shift	[-6,-2] (semitones)
Pitch max	Maximal pitch shift	[2,6] (semitones)
Min SNR	Minimal SNR for coloured noise	[0,5] (dB)
Max SNR	Maximal SNR for coloured noise	[10,30] (dB)
Min Gain	Minimal gain	[-20,-10] (dB)
Max Gain	Maximal gain	[3,10] (dB)

Table: Augmentations, descriptions and parameter ranges

To minimize the described HSIC, we resort to a random search among the parameters.

We apply a known augmentation distribution to the test splits of Librispeech and use it as target domain. (10 times)

- 1. Sample an augmentation distribution τ .
- 2. Apply τ on LibriSpeech test splits to create the testing sets and on *dev-clean* to create D_T .

We apply a known augmentation distribution to the test splits of Librispeech and use it as target domain. (10 times)

- 1. Sample an augmentation distribution τ .
- 2. Apply τ on LibriSpeech test splits to create the testing sets and on *dev-clean* to create D_T .
- 3. Apply our method on D_T to obtain a distribution τ^* .
- 4. Apply τ^* on LibriSpeech *train-clean-100* to obtain D_{CT} , then use D_{CT} for training.

We apply a known augmentation distribution to the test splits of Librispeech and use it as target domain. (10 times)

- 1. Sample an augmentation distribution τ .
- 2. Apply τ on LibriSpeech test splits to create the testing sets and on *dev-clean* to create D_T .
- 3. Apply our method on D_T to obtain a distribution τ^* .
- 4. Apply τ^* on LibriSpeech *train-clean-100* to obtain D_{CT} , then use D_{CT} for training.

Warning

Only **one** fine-tuning is done in the controlled Oracle experiment as we only have a test target dataset.

Split	No Aug	Default	Random	CI Augment	Topline
test-clean	33.81	29.86	29.91	27.20	26.11
test-other	44.12	43.89	42.48	40.68	36.92

Table: Mean WER results on distorted versions of LibriSpeech test splits

- Default: All augmentations with default parameters.
- Random: Mean of 9 runs with random augmentation policies during training.
- **Topline**: Applying the test distortions on the train data.

Experiments on Real Distorted Datasets

Conditions for the datasets:

- Small target distorted dataset => interesting challenge
- Textual correspondance with the neutral dataset (read speech)
- Coherent and regular acoustic conditions.

We took the samples from the most productive contributors of CommonVoice 11.0, and selected two contributors respecting the conditions. (7 and 9 hours of data)

Experiments on Real Distorted Datasets

Two steps fine-tuning, first on LibriSpeech *train-clean-100* (distorted or not), and second on the contributor data.

Contributor	Without Augmentations			With Augmentations		
	Train100	Only Contrib.	${\sf Train100} + {\sf Contrib}.$	Default	Random	CI Augment
Contributor 1	102.52	73.0	27.71	27.95	27.33	24.27
Contributor 2	96.49	98.92	20.48	20.76	22.23	16.49

Table: WER Results on the two considered CommonVoice contributors.

Varying the available annotation

Figure: Effect of choosing suitable augmentations on the performance depending on the quantity of in-domain training data for each of the two considered contributors.

Conclusion

Our approach allows for automatic data augmentation for better adaptation of self-supervised speech models.

- Main strengths : efficient and good in very low resource scenarios.
- Limitations: Limited to acoustic mismatch and need to see the effect of bigger "Neutral" datasets.

Thank you all for your attention !

Please feel free to ask any question.

The oracle experiments has two main advantages:

- 1. Ensuring that the distortions in the target set can be replicated with the considered set of augmentations.
- 2. Allows to compare the obtained distribution $\tau *$ with the one used to create the target.

After results

- We observe a Spearman correlation score of 0.51 between the HSIC scores and the distances between vectors of probabilities.
- Furthermore, the application probabilities of the 10 (top 5%) best scoring distributions are 15% closer to the target ones than those of the 10 worst scoring ones.