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Given the downstream task of interest,
how to select and parametrize the data augmentations ?
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Conditional Independence based estimator

Self supervised learning : learning representations through solving
pretext tasks.

Previous work
Speech samples ⊥ Pretext task labels | Downstream labels
−→ Good pretext task

S. Zaiem and al., "Pretext Tasks Selection for Multitask Self-Supervised Audio
Representation Learning," in IEEE JSTSP, 2022
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Speech samples ⊥ Pretext task labels | Downstream labels
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Conditional dependence estimate : HSIC(X ,Z |Y )
How is this related to Contrastive learning ?



Link with Contrastive Learning

Key observation
Contrastive learning ≈ Task of retrieving the original speech
sample from an augmented version (view)

If we can retrieve the original sample, we can maximise the
similarity between two generated segments.



Link with Contrastive Learning

Key observation
Contrastive learning ≈ Task of retrieving the original speech
sample from an augmented version (view)

▶ Inputs : pretraining dataset Xunl , augmentation distribution τ

▶ Creating the views : Xunl
fτ (x)−−−→ X ′

unl
▶ Contrastive learning can be seen as as the task Zτ consisting

for an augmented point x ′ in retrieving the ID of f −1
τ (x ′)



Link with Contrastive Learning

▶ Contrastive learning pretraining is now seen as solving task Zτ .
▶ The lower the HSIC(X ,Z |Y ) (the conditional indpendence

estimator), the better is the the pretraining task.



Link with Contrastive Learning

▶ Contrastive learning pretraining is now seen as solving task Zτ

▶ The lower the HSIC(X ,Z |Y ) (the conditional indpendence
estimator), the better is the the pretraining task

▶ For a given task (X ,Y ), τ is chosen such as :

τ∗ = argmin
τ

HSIC(X ,Zτ |Y )
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Selecting the Augmentation Distribution

An augmentation distribution τ is defined by a set of parameters
defining how a chain of augmentations is sampled during
pretraining
Set of considered augmentations :
▶ Reverberation
▶ Band Scaling
▶ Pitch Shifting
▶ Clipping
▶ Timedropping



Selecting the Augmentation Distribution

Every distribution τ is represented as a vector of P = 14 parameters
Probabilities of applying an augmentation / controlling parameters

Name Description Range
Room scale min Min room size [0,30]
Room scale max Max room size [30,100]
Band Scaler Scales the rejected band [0,1]
Pitch Shift Max Amplitude of a pitch shift [150,450]
Pitch Quick pr. Speeds pitch shifting [0,1]
Clip Min Minimal clip factor [0.3, 0.6]
Clip Max Maximal clip factor [0.6, 1]
Timedrop max Size of a time dropout [30-150] ms

To minimize the described HSIC, we resort to a random search
among the parameters
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Next steps : Finetuning
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Datasets

Datasets Roles and Descriptions

Task Dataset ∼Dur.(train) Speak./Lang.
Pretraining CommonVoiceEn6.1 1686 hours ∼66173
Lang. ID VoxForge 176 438 utt 6
Speak Reco VoxCeleb1 148 642 utt 1251

Architecture details very close to COLA, our baseline, for
pretraining. And finetuning according to the SUPERB benchmark
of SSL representations.



Downstream Results

All (Default) : applying on every point all the augmentations with
default parameters.
Random : mean of 5 runs with randomly sampled distributions.

Down. Task COLA Our Implementations
Without Random (5 runs) All (Default) Selected

Language ID 71.3 76.1 84.9 84.3 85.2
Speaker ID 29.9 35.2 32.0 45.1 46.9



Qualitative analysis

Considered quantity (MED): Difference of the probability of
picking an augmentation between the best and worst scoring
augmentations, depending on the downstream dataset.
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Considered quantity (MED): Difference of the probability of
picking an augmentation between the best and worst scoring
augmentations, depending on the downstream dataset.
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Recording conditions seem to prevail in selecting the relevant
augmentations.



Qualitative analysis
Differences in parameters values :
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Conclusion

Given a downstream task, can we choose the augmentations for a
contrastive learning based pretraining ?



Conclusion

Given a downstream task, can we choose the augmentations for a
contrastive learning based pretraining ?

▶ Conditional independence based data augmentation selection
and parametrization

▶ Further works on data augmentation in supervised settings



Thank You

Thank you all for your attention !

Please feel free to ask any question
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